Upgrading Melanoma Treatment: Promising Immunotherapies Combinations in the Preclinical Mouse Model

Author:

Lara-Vega Israel1ORCID

Affiliation:

1. Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico

Abstract

Background: Melanoma, known for its high metastatic potential, does not respond well to existing treatments in advanced stages. As a solution, immunotherapy-based treatments, including anti-PD-1/L1 and anti-CTLA-4, have been developed and evaluated in preclinical mouse models to overcome resistance. Although these treatments display the potential to suppress tumor growth, there remains a crucial requirement for a thorough assessment of long-term efficacy in preventing metastasis or recurrence and improving survival rates. Methods: From 2016 onwards, a thorough examination of combined immunotherapies for the treatment of cutaneous melanoma in preclinical mouse models was conducted. The search was conducted using MeSH Terms algorithms in PubMed®, resulting in the identification of forty-five studies that met the rigorous inclusion criteria for screening. Results: The C57 mouse model bearing B16-melanoma has been widely utilized to assess the efficacy of immunotherapies. The combination of therapies has demonstrated a synergistic impact, leading to potent antitumor activity. One extensively studied method for establishing metastatic models involves the intravenous administration of malignant cells, with several combined therapies under investigation. The primary focus of evaluation has been on combined immunotherapies utilizing PD1/L1 and CTLA-4 blockade, although alternative immunotherapies not involving PD-1/L1 and CTLA-4 blockade have also been identified. Additionally, the review provides detailed treatment regimens for each combined approach. Conclusion: The identification of techniques for generating simulated models of metastatic melanoma and investigating various therapeutic combinations will greatly aid in evaluating the overall systemic efficacy of immunotherapy. This will be especially valuable for conducting short-term preclinical experiments that have the potential for clinical studies.

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3