Changes in Body Composition of Old Rats at Different Time Points After Dexamethasone Administration

Author:

Aru Maire1,Alev Karin1,Pehme Ando1,Purge Priit1,Õnnik Lauri1,Ellam Anu1,Kaasik Priit1,Seene Teet1

Affiliation:

1. Institute of Sport Sciences and Physiotherapy, University of Tartu, Ravila 14a, 50411 Tartu, Tartu, Estonia

Abstract

Background: Aging leads to changes in skeletal muscle quantity and quality and is accompanied with increase in body mass and fat mass, whereas fat-free mass either decreases or remains unchanged. The body composition of rodents has been an important factor for clinical trials in the laboratory. Glucocorticoids such as dexamethasone are widely used in clinical medicine, but may induce myopathy, characterized by muscle weakness, atrophy, and fatigue. In animals treated with glucocorticoids, a dose-dependent reduction of body weight has been observed. This weight loss is usually followed by muscle atrophy and a reduction of several muscle proteins, contributing to impaired muscle function. This study was designed to describe changes in body composition and BMC of 22-month-old rats during 10- and 20-day recovery period after 10-day dexamethasone administration. Method: Data on body mass, lean body mass, fat mass and bone mineral content of the rats were obtained with dual energy X-ray absorptiometry scan. Result: Significant reduction in body mass, lean body mass, fat mass and fast-twitch muscle mass was observed after dexamethasone treatment. Body mass, fat mass and fast-twitch muscle mass stayed decreased during 20 days after terminating the hormone administration; lean body mass reached the preadministration level after 20-day recovery period. There were no significant changes in bone mineral density during the recovery period. Dexamethasone treatment gradually reduced hindlimb grip strength that also stayed decreased during the 20-day recovery period. Conclusion: his study demonstrated that a 10-day period of overexprosure to glycocorticoids induced longlasting changes in old rats’ body composition and these values did not attain the baseline level even after 20-day recovery period.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3