Hybrid Electric Cycle with Two Stoke Engine Based Two Wheel Terrain Vehicle

Author:

Kandasamy Prabaakaran1ORCID,Esakkiappan Kaliappan1,Govindan Ajai1,Nanthivaraman Bharathraj1,Rajendran Ranjith1,Selvaraj Jaisiva2

Affiliation:

1. Department of Electrical and Electronics Engineering, Easwari Engineering College, Chennai, India

2. Department of Electrical and Electronics Engineering, Sri Krishna College Of Technology Coimbatore, India

Abstract

Introduction:: Hybrid bicycles combine the features of road bikes and mountain bikes, offering a versatile and practical mode of transportation. The focus of the hybrid bicycle project is on energy conservation. Designed with a lightweight frame, comfortable seating, and efficient wheels, these bikes provide riders with speed, control, and flexibility on various terrains. Their adaptability, ease of use, and low maintenance requirements contribute to their growing popularity. Method:: The hybrid bicycles in this project include a 250 W brushless motor, a lead-acid battery, a controller, and a 110 cc internal combustion engine commonly used in motorcycles and scooters. The engine operates on the principle of internal combustion, delivering optimal performance in a compact and lightweight package. The BLDC motor, known for its efficiency and reliability, utilizes permanent magnets to generate magnetic fields, eliminating the need for brushes and commutators. Lead-acid batteries, widely used in various applications, store and release electrical energy effectively. Controllers play a crucial role in managing electric motor operations, regulating speed, torque, and direction of rotation. Results:: Hybrid bicycles offer a sustainable and eco-friendly alternative to cars for commuting. The paper explores hybrid bicycles' design, advantages, and potential impact on the environment and public health, aiming to encourage their adoption for daily commutes and recreational activities. The Speed range about 40-45 km/hr with 2.688 hrs of effective battery Conclusion:: It also discusses the potential for advancements in battery-powered electric hybrid bikes to enhance their appeal and impact. Ultimately, hybrid bicycles have the potential to reduce traffic congestion and decrease air pollution.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3