Identification of Chemokines-Related miRNAs as Potential Biomarkers in Psoriasis Based on Integrated Bioinformatics Analysis

Author:

Shi Yuling1,Deng Hui2,Zhuang Haojun2,Wang Xiaoming2,Guo Meiliang2,Meng Qinqin2,Liu Na2,Wei Min2

Affiliation:

1. Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200040, China

2. Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China

Abstract

Background: Psoriasis is an immune-mediated skin disorder caused by the proliferation of keratinocytes. Although psoriasis is generally diagnosed based on clinical manifestations, sensitive biomarkers are needed to help diagnose psoriasis early with atypical presentations. MicroRNAs play a functional role in the development of psoriasis, and they are stable and suitable as biomarkers in psoriasis. Material and Methods: The GSE50790 and GSE53552 datasets from the Gene Expression Omnibus (GEO) database were used to identify Differentially Expressed Genes (DEGs) between the control group and the lesional group. DEGs were processed for enrichment analysis to explore the functions, and a Protein-Protein Interaction (PPI) network was constructed to obtain gene clusters. The signalling pathway associated with gene cluster 1 was processed to further identify related genes. Hub genes were obtained through the intersection of cluster 1 and the related genes. Hub genes were used to predict the miRNAs through a gene-miRNA interaction network. The relative expression of miRNAs was measured by qRT-PCR to identify the suitability of miRNAs as biomarkers. Results: Bioinformatics analysis revealed that the chemokine signalling pathway is involved in the development of psoriasis. Five related miRNAs were mined from the datasets, and qRT-PCR showed that hsa-miR-612 (p=0.0015), hsa-miR-3194-5p (p=0.0078) and hsa-miR-4316 (p<0.0001) may be potential biomarkers in psoriasis.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3