Molecular Interactions of Zyesami with the SARS-CoV-2 nsp10/nsp16 Protein Complex

Author:

Alnomasy Sultan F.1,Alotaibi Bader S.1,Aldosari Ziyad M.1,Mujamammi Ahmed H.2,Alzamami Ahmad1,Anand Pragya3,Akhter Yusuf3,Khan Farhan R.1,Hasan Mohammad R.1

Affiliation:

1. Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Quwayiyah, Shaqra University, Saudi Arabia

2. Department of Pathology, Clinical Biochemistry Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia

3. Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India

Abstract

Background: SARS-CoV-2 emerged in late 2019 and caused COVID-19. Patients treated with Zyesami were found to have a 3-fold decrease in respiratory failure and improved clinical outcomes. It was reported that Zyesami inhibits RNA replication of SARS-CoV-2, including several non-structural proteins essential in viral RNA replication. SARS-CoV-2 is a distinctive virus that requires nsp10 and nsp16 for its methyltransferases activity which is crucial for RNA stability and protein synthesis. Objective: We aimed the in silico determination of inhibitory consequences of Zyesami on the SARS-CoV-2 nsp10/nsp16 complex. Targeting SARS-CoV-2 nsp10/ nsp16 protein complex may be used to develop a drug against COVID-19. Methods: I-TASSER was used for secondary structure prediction of Zyesami. CABS-dock was used to model Zyesami with SARS-CoV-2 nsp16 interaction. The docked complex was visualized using PyMol. The quality of the docking model was checked by using ProQdock. Results: The 3D structure of SARS-CoV 2, nsp10/nsp16 showed that essential interactions exist between nsp10 and nsp16. Significant contact areas of Zyesami exist across amino acid residues of nsp10; Asn40-Thr47, Val57-Pro59, Gly69-Ser72, Cys77-Pro84, Lys93-Tyr96. In addition, polar contacts between nsp16 and Zyesami are Asn299-Ser440, Val297-Asn443, Gly149-Tyr437, Gln159-Lys430, Asn178- Arg429, Ser146-Arg429, Ser146-Arg429, Lys147-Arg429, Asr221-Thr422, Lys183-Asp423, Lys183-Asp423, and Gln219-Asp423 the residues are shown of nsp16 and Zyesami respectively. Conclusion: The structural bioinformatics analyses have indicated the potential binding specificity of Zyesami and nsp16. Data predict how the initial binding of Zyesami with nsp10 and nsp16 may occur. Moreover, this binding could significantly inhibit the 2 -O-MTase activity of the SARSCoV nsp10/16 complex.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3