Network Pharmacology Study on the Mechanism of Gastrodin Reversing Depressive Symptoms in Traumatically Stressed Rats

Author:

Chen Xubing1,Wang Ying1ORCID,Zhao Ruodan1ORCID,Li Xie1,Zhang Haizhu1

Affiliation:

1. School of Pharmacy, Dali University, Dali 671000, China

Abstract

Background: Depression is a typical outcome of the repair of posttraumatic stress disorder (PTSD). Based on network pharmacology and neuropharmacology experiments, this study aimed to explore how gastrodin (GAS) reverses depressive symptoms in traumatically stressed rats. Methods: GAS-related targets were predicted by SwissTargetPrediction; depression-related targets were collected from GeneCards and therapeutic target database (TTD); protein-protein interaction (PPI) network was constructed with its action mechanism being predicted by gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. The animal model of PTSD was replicated by single prolonged stress (SPS). The antidepressant effect of GAS was investigated by the forced swim test (FST) and tail suspension test (TST). The levels of tyrosine hydroxylase (TH) and corticotropin-releasing factor type I receptor (CRF1) in locus ceruleus (LC) and the expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus (PVN) and central amygdala (CeA) were measured by immunofluorescence. Results: GAS significantly shortened the tail suspension and swimming immobility in SPS rats in TST and FST experiments (p < 0.05 or p < 0.01). The network analysis showed that the critical antidepressant targets of GAS were 86 targets such as GAPDH, CASP3 MMP9, HRAS, DPP4, and TH, which were significantly enriched in the pathways such as pathways neuroactive ligandreceptor interaction. High doses of GAS could significantly reduce the level of TH and CRF in CEA in the brain of rats with depressive symptoms (p < 0.01) and, at the same time, lower the expression of CRF in PVN (p < 0.05). Conclusion: The effect of GAS on depressive symptoms in SPS rats may be closely related to its reduction of CRF expression in PVN and CeA and inhibition of neuron (NE) synthesis in LC.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3