Investigating the Mechanism of Shengmaiyin (Codonopsis pilosula) in the Treatment of Heart Failure Based on Network Pharmacology

Author:

Kan Mo1,Wang Jifeng1,Ming Sitong1,Sui Xin1,Zhang Zhuang1,Yang Qing1,Liu Xiaoran1,Lin Jianan1,Zhang Yanhong1,Pang Qihang1,Liu Yaxin1,Li Zhen1,Li Na1,Lin Zhe1

Affiliation:

1. Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China

Abstract

Background and Objective: To explore the molecular mechanism by which Shengmaiyin (Codonopsis pilosula) (SMY) improves isoproterenol (ISO)-induced heart failure (HF) in rats via a traditional Chinese medicine (TCM) integrated pharmacology research platform, The Chinese Medicine Integrated Pharmacology Platform (TCMIP V2.0). Method:: The chemical constituents and drug targets of SMY medicines were identified through TCMIP, and HF disease target information was collected. A prescription Chinese medicinecomponent- core target network was constructed through the TCM network mining module, and biological process and pathway enrichment analyses of core targets were conducted. In vivo experiments in rats were performed to verify the pathway targets. Hematoxylin and eosin staining was used to observe myocardial tissue morphology. ELISA kits were used to detect cAMP content, and Western blotting was used to detect the expression levels of signaling pathway-related proteins. Results: The TCMIP analysis indicated that SMY treatment of HF activates the GS-β-adrenergic receptor (βAR)-cAMP-protein kinase A (PKA) signaling pathway. The in vivo experimental results confirmed this finding. High-dose SMY significantly improved the morphology of ISO-injured myocardium. The levels of G-protein-coupled receptor (GPCR), adenylate cyclase (AC), βAR, and PKA proteins in myocardial tissue were significantly increased in the SMY group. In addition, the content of cAMP in myocardial tissue was increased, and the content of cAMP in serum was decreased. Conclusion: Based on the analysis of TCMIP, SMY treatment of HF may activate the GS-βARcAMP- PKA signaling pathway. The findings provide a theoretical basis for further research on the anti-HF mechanism of SMY.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3