Comprehensive Bioinformatics Analysis Identifies Tumor Microenvironment and Immune-related Genes in Small Cell Lung Cancer

Author:

Song Yongchun1,Sun Yanqin2,Sun Tuanhe1,Tang Ruixiang1

Affiliation:

1. Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China

2. Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong, China

Abstract

Background: Tumor microenvironment (TME) cells play important roles in tumor progression. Accumulating evidence show that they can be exploited to predict the clinical outcomes and therapeutic responses of tumor. However, the role of immune genes of TME in small cell lung cancer (SCLC) is currently unknown. Objective: To determine the role of immune genes in SCLC. Methods: We downloaded the expression profile and clinical follow-up data of SCLC patients from Gene Expression Omnibus (GEO), and TME infiltration profile data of 158 patients using CIBERSORT. The correlation between TME phenotypes, genomic features, and clinicopathological features of SCLC was examined. A gene signature was constructed based on TME genes to further evaluate the relationship between molecular subtypes of SCLC with the prognosis and clinical features. Results: We identified a group of genes that are highly associated with TME. Several immune cells in TME cells were significantly correlated with SCLC prognosis (p<0.0001). These immune cells displayed diverse immune patterns. Three molecular subtypes of SCLC (TMEC1-3) were identified on the basis of enrichment of immune cell components, and these subtypes showed dissimilar prognosis profiles (p=0.03). The subtype with the best prognosis, TMEC3, was enriched with immune activation factors such as oncogene M0, oncogene M2, T cells follicular helper, and T cells CD8 (p<0.001). The TMEC1 subtype with the worst prognosis was enriched with T cells CD4 naive, B cells memory and Dendritic cells activated cells (p<0.001). Further analysis showed that the TME was significantly enriched with immune checkpoint genes, immune genes, and immune pathway genes (p<0.01). From the gene expression data, we identified four TME-related genes, GZMB, HAVCR2, PRF1 and TBX2, which were significantly associated with poor prognosis in both the training set and the validation set (p<0.05). These genes may serve as markers for monitoring tumor responses to immune checkpoint inhibitors. Conclusion: This study shows that TME features may serve as markers for evaluating response of SCLC cells to immunotherapy.

Funder

Construction of Basic Medical Disciplines in Guangdong Medical University

Guangdong Natural Science Foundation

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3