Pyrrolidine Dithiocarbamate Enhances the Cytotoxic Effect of Arsenic Trioxide on Acute Promyelocytic Leukemia Cells

Author:

Yu Simin1,Ge Zhuowang2,Chen Weixiang3,Han Jinbin1

Affiliation:

1. Department of Traditional Chinese Medicine, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

2. Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

3. General Department of Chongming Branch, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Abstract

Background: More than 95% patients with acute promyelocytic leukemia (APL) carry the PML-RARα fusion oncoprotein. Arsenic trioxide (ATO) is an efficacious therapeutic agent for APL, and the mechanism involves the binding with PML and degradation of PML-RARα protein. Pyrrolidine dithiocarbamate (PDTC) demonstrates the function of facilitating the cytotoxic effect of ATO. Purpose: To investigate whether PDTC is potential to enhance the cytotoxic effect of ATO to APL cells by acting on PML-RARα oncoproteins. Methods: Inhibitory effects of drugs on cell viability were examined by CCK-8 test, and apoptosis was evaluated by flow cytometry. Western blotting and immunofluorescence assays were used to explore the mechanism Results: PDTC improved the effect of ATO on inhibiting proliferation of NB4 cells in vitro. Further, PDTC-ATO promoted apoptosis and cell cycle arrest in NB4 cells. The expression of caspase- 3 and Bcl-2 was reduced in PDTC-ATO-treated NB4 cells, while cleaved caspase-3 and Bax was up-regulated. Furthermore, less PML-RARα expression were found in PDTC-ATO-treated NB4 cells than that in NB4 cells treated with ATO singly. Laser confocal microscopy showed that protein colocalization of PML and RARα was disrupted more significantly by PDTC-ATO treatment than that with ATO monotherapy. Conclusions: In conclusion, PDTC enhanced the cytotoxic effect of ATO on APL, and the mechanism was, at least in part, related to the promotion of ATO-induced degradation of PML-RARα fusion protein via forming a complex PDTC-ATO.

Funder

National Natural Science Foundation of China

Cross disciplinary Research Fund of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3