The Expression and Prognostic Value of Co-stimulatory Molecules in Clear Cell Renal Cell Carcinoma (CcRcc)

Author:

Wu Chengjiang1,Cai Xiaojie2,He Chunyan3

Affiliation:

1. Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.

2. Department of Radiology, Affiliated Changshu Hospital of Soochow University, First People’s Hospital of Changshu City, Suzhou, China

3. Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine Kunshan, Jiangsu, China

Abstract

Background: Renal cell carcinoma (RCC) was one of the most common malignant cancers in the urinary system. Clear cell carcinoma (ccRCC) is the most common pathological type, accounting for approximately 80% of RCC. The lack of accurate and effective prognosis prediction methods has been a weak link in ccRCC treatment. Co-stimulatory molecules played the main role in increasing anti-tumor immune response, which determined the prognosis of patients. Therefore, the main objective of the present study was to explore the prognostic value of Co-stimulatory molecules genes in ccRCC patients. Method: The TCGA database was used to get gene expression and clinical characteristics of patients with ccRCC. A total of 60 Co-stimulatory molecule genes were also obtained from TCGA-ccRCC, including 13 genes of the B7/ CD28 Co-stimulatory molecules family and 47 genes of the TNF family. In the TCGA cohort, the least absolute shrinkage and selection operator (LASSO) Cox regression model was used to generate a multigene signature. R and Perl programming languages were used for data processing and drawing. Real-time PCR was used to verify the expression of differentially expressed genes. Results: The study's initial dataset included 539 ccRCC samples and 72 normal samples. The 13 samples have been eliminated. According to FDR<0.05, there were differences in the expression of 55 Co-stimulatory molecule genes in ccRCC and normal tissues. LASSO Cox regression analysis results indicated that 13 risk genes were optimally used to construct a prognostic model of ccRCC. The patients were divided into a high-risk group and a low-risk group. Those in the high-risk group had significantly lower OS (Overall Survival rate) than patients in the low-risk group. Receiver operating characteristic (ROC) curve analysis confirmed the predictive value of the prognosis model of ccRCC (AUC>0.7). There are substantial differences in immune cell infiltration between high and low-risk groups. Functional analysis revealed that immune-related pathways were enriched, and immune status was different between the two risk groups. Real-time PCR results for genes were consistent with TCGA DEGs. Conclusion: By stratifying patients with all independent risk factors, the prognostic score model developed in this study may improve the accuracy of prognosis prediction for patients with ccRCC.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3