Hub Genes and Immune Cell Infiltration in Hypoxia-Induced Pulmonary Hypertension: Bioinformatics Analysis and In Vivo Validation

Author:

Li Chengwei1,Xia Jingwen1,Yiminniyaze Ruzetuoheti1,Dong Liang1,Li Shengqing1ORCID

Affiliation:

1. Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China

Abstract

Background: Hypoxia-induced pulmonary hypertension (HPH) represents a severe pulmonary disorder with high morbidity and mortality, which necessitates identifying the critical molecular mechanisms underlying HPH pathogenesis. Methods: The mRNA expression microarray GSE15197 (containing 8 pulmonary tissues from HPH and 13 normal controls) was downloaded from Gene Expression Omnibus (GEO). Gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed by RStudio software. The Protein-Protein Interaction (PPI) network was visualized and established using Cytoscape, and the cytoHubba app from Cytoscape was used to pick out the hub modules. The infiltration of immune cells in HPH was analyzed using the CIBERSORTx. To confirm the potential hub genes, real-time quantitative reverse transcription PCR (qRT-PCR) was conducted using lung tissues of rat HPH models and controls. Results: A total of 852 upregulated and 547 downregulated genes were identified. The top terms in biological processes were apoptosis, proliferation, and regulation of the MAPK cascade, including ERK1/2. Cytoplasm, cytosol, and membrane were enriched in cellular component groups. Molecular functions mainly focus on protein binding, protein serine/threonine kinase activity and identical protein binding. KEGG analysis identified pathways in cancer, regulation of actin cytoskeleton and rap1 signaling pathway. There was significantly different immune cell infiltration between HPH and normal control samples. High proportions of the memory subsets of B cells and CD4 cells, Macrophages M2 subtype, and resting Dendritic cells were found in HPH samples, while high proportions of naive CD4 cells and resting mast cells were found in normal control samples. The qRTPCR results showed that among the ten identified hub modules, FBXL3, FBXL13 and XCL1 mRNA levels were upregulated, while NEDD4L, NPFFR2 and EDN3 were downregulated in HPH rats compared with control rats. Conclusion: Our study revealed the key genes and the involvement of immune cell infiltration in HPH, thus providing new insight into the pathogenesis of HPH and potential treatment targets for patients with HPH.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Innovation Action Plan, Medical Innovation Research Special Project

General Project of Shanghai Municipal Health Commission

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3