HIV Preintegration Transcription and Host Antagonism

Author:

Wu Yuntao1ORCID

Affiliation:

1. Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States

Abstract

Abstract: Retrovirus integration is an obligatory step for the viral life cycle, but large amounts of unintegrated DNA (uDNA) accumulate during retroviral infection. For simple retroviruses, in the absence of integration, viral genomes are epigenetically silenced in host cells. For complex retroviruses such as HIV, preintegration transcription has been found to occur at low levels from a large population of uDNA even in the presence of host epigenetic silencing mechanisms. HIV preintegration transcription has been suggested to be a normal early process of HIV infection that leads to the syntheses of all three classes of viral transcripts: multiply-spliced, singly-spliced, and unspliced genomic RNA; only viral early proteins such as Nef are selectively translated at low levels in blood CD4 T cells and macrophages, the primary targets of HIV. The initiation and persistence of HIV preintegration transcription have been suggested to rely on viral accessory proteins, particularly virion Vpr and de novo Tat generated from uDNA; both proteins have been shown to antagonize host epigenetic silencing of uDNA. In addition, stimulation of latently infected resting T cells and macrophages with cytokines, PKC activator, or histone deacetylase inhibitors has been found to greatly upregulate preintegration transcription, leading to low-level viral production or even replication from uDNA. Functionally, Nef synthesized from preintegration transcription is biologically active in modulating host immune functions, lowering the threshold of T cell activation, and downregulating surface CD4, CXCR4/CCR5, and HMC receptors. The early Tat activity from preintegration transcription antagonizes repressive minichromatin assembled onto uDNA. The study of HIV preintegration transcription is important to understanding virus-host interaction and antagonism, viral persistence, and the mechanism of integrase drug resistance. The application of unintegrated lentiviral vectors for gene therapy also offers a safety advantage for minimizing retroviral vector-mediated insertional mutagenesis.

Funder

National Institutes of Health

Publisher

Bentham Science Publishers Ltd.

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3