Signal Pathways and Intestinal Flora through Trimethylamine N-oxide in Alzheimer's Disease

Author:

Zhang Yao1,Jian Wenxuan1

Affiliation:

1. Science and innovation center, Guangzhou University of Chinese Medicine, Guangzhou, China

Abstract

Abstract: The current studies show signs of progress in treating Alzheimer's disease (AD) with the “brain-gut axis.” Restoring intestinal flora balance can alleviate neurodegeneration in the central nervous system. However, due to the complex mechanisms involved in the brain-gut axis, the neuroprotective mechanism brought by intestinal flora has not been fully understood. Trimethylamine N-oxide (TMAO) is a microbiota-dependent metabolism production; TMAO has been proven to be a major risk factor for atherosclerosis, thrombosis, type II diabetes, and other diseases. Meanwhile, all the above diseases are associated with AD; thus, we speculate that TMAO and AD are also correlated. Microbiota, such as Firmicutes, Ruminococcaceae, Escherichia coli, Bifidobacterium, Akkermansia, etc., correlate with the production process of TMAO. High choline intake and insulin resistance have also been identified as contributors to TMAO synthesis. With the increasing TMAO in plasma, TMAO can enter the central nervous system, causing neuroinflammation and immune responses and damaging the blood-brain barrier. TMAO can increase the expression of Aβ and the hyperphosphorylation of tau protein, regulate the signal pathways of NLRP3/ASC/caspase1, SIRT1/p53/p21/Rb, PERK/eIF2α/ER-stress, SIRT3-SOD2-mtROS, TXNIP-NLPR3, and PERK/Akt/mTOR, and stimulate the inflammation, apoptosis, endoplasmic reticulum stress, and the ROS. In this mini-review, we have summarized the diseases induced by TMAO through clinical and signal pathways, and intestinal flora correlated with TMAO. Through the analysis of diseases and mechanisms involved in TMAO, we have concluded TMAO to be a potentially important pathological factor of AD.

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3