Reduced Level of Prolylhydroxyproline in the Nail Clippings of Oral Cancer Patients and its Role as an Activator of Phospholipase C-β2

Author:

Bhatkar Devyani1,Nimburkar Dipti1,Raj Ajay Kumar1,Lokhande Kiran B.2,Khunteta Kratika1,Kothari Haet1,Joshi Mrudula1,Sarode Sachin C.34ORCID,Sharma Nilesh Kumar1ORCID

Affiliation:

1. Cancer and Translational Research Lab., Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India

2. Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India

3. Research Director, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India

4. Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India

Abstract

Background: The oral cancer microenvironment plays an important role in the development and progression of the disease which depicts the heterogeneous nature of diseases. Several cellular and non-cellular factors, including dipeptides, have been reported to drive tumor progression and metastasis. Among various secreted molecules in the tumor microenvironment, prolylhydroxyproline (Pro-Hyp) is a collagen-degraded product with specific relevance to fibrosis and oral cancer. However, the detection of Pro-Hyp in the nails of oral cancer patients is a potential biomarker, and our understanding of the biological relevance of Pro-Hyp is highly limited. Methods: Here, the authors have attempted to use a novel and in-house vertical tube gel electrophoresis (VTGE) protocol to evaluate the level of Pro-Hyp in the nails of oral cancer patients and healthy subjects. Furthermore, we employed molecular docking and molecular dynamics (MD) simulations to predict the biological function of Pro-Hyp. ADME profiles such as the druglikeness and leadlikeness of Pro-Hyp and a known PLC-β2 activator, m-3M3FBS, were evaluated by the SWISS-ADME server. Results: We report that among various key metabolites, Pro-Hyp, a dipeptide, is reduced in the nails of oral cancer patients. Molecular docking and MD simulations helped to suggest the potential role of Pro-Hyp as an activator of Phospholipase C-β2 (PLC-β2). Pro-Hyp displayed good binding affinity (-7.6 kcal/mol) with specific interactions by a conventional hydrogen bond with key residues, such as HIS311, HIS312, VAL641, and GLU743. MD simulations showed that the activator binding residues and stability of complexes are similar to the well-known activator m-3M3FBS of PLC-β2. ADME profiles such as the druglikeness and leadlikeness of Pro-Hyp were found to be highly comparable and even better than those of m-3M3FBS. Conclusion: This study is one of the first reports on Pro-Hyp as a metabolite biomarker in the nails of oral cancer patients. Furthermore, the implications of Pro-Hyp are proposed to activate PLC-β2 as a pro-tumor signaling cascade. In the future, diagnostic and therapeutic approaches may be explored as biomarkers and mimetic of Pro-Hyp.

Funder

Dr. D.Y. Patil Vidyaoeeth, Pune, India

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3