Dicarbonyls Generation, Toxicities, Detoxifications and Potential Roles in Diabetes Complications

Author:

Alouffi Sultan1,Khan Mohd Wajid Ali1ORCID

Affiliation:

1. Molecular Diagnostic and Personalised Therapeutics Unit, University of Hail, Hail, Saudi Arabia

Abstract

It has been well established that advanced glycation end-products (AGEs) have a strong correlation with diabetes and its secondary complications. Moreover, dicarbonyls, especially, methylglyoxal (MG) and glyoxal, accelerate AGEs formation and hence, have potential roles in the pathogenesis of diabetes. They can also induce oxidative stress and concomitantly decrease the efficiency of antioxidant enzymes. Increased proinflammatory cytokines (tumor necrosis factor-α and interleukin- 1β) are secreted by monocytes due to the dicarbonyl-modified proteins. High levels of blood dicarbonyls have been identified in diabetes and its associated complications (retinopathy, nephropathy and neuropathy). This review aims to provide a better understanding by including in-depth information about the formation of MG and glyoxal through multiple pathways with a focus on their biological functions and detoxifications. The potential role of these dicarbonyls in secondary diabetic complications is also discussed.

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3