Recent Advancement in the Green Synthesis of Silver Nanoparticles

Author:

Thakur Ajay1ORCID,Verma Monika1ORCID,Bharti Ruchi1ORCID,Sharma Renu1ORCID

Affiliation:

1. Department of Chemistry, Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India

Abstract

Abstract: Because of its miscellaneous properties, developing less environmentally hazardous and trustworthy methodologies has become one of the most crucial steps toward synthesizing nanoparticles (NPs) among researchers and scientists. In this direction, silver nanoparticles (AgNPs or SNPs) have gained much attention because of their anti-inflammatory, antibacterial, antiviral, and antifungal properties, potential toxicity, and unusual physicochemical features. Concerning the toxicity of silver nanoparticles, silver nanoparticles may prove to be an essential tool against many drugresistant microorganisms and substitutes for antibiotics. However, the synthesis of AgNPs using conventional methods had a toxic impact and caused much damage to the ecosystem. Researchers have used various production techniques to prevent the adverse effects of toxic chemicals, including algae, bacteria, fungi, and plants. This review study has covered recent advancements in green synthetic methodologies for synthesizing AgNPs. This insight provides a comprehensive overview of key findings in the green synthesis of Ag nanoparticles and attempts to focus on factors affecting their synthesis, characterization, applications, potential toxic impact on living organisms, merits/ demerits, and prospects.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3