Proteomic Analysis Based on TMT Regarding the Therapeutic Action of Rhizoma Drynariae on Rats in an Osteoporosis Model

Author:

Su Hui1ORCID,Yan Binghan1,Wang Ruochong2,Li Zhichao1,Xu Zhanwang13,Xue Haipeng3,Tan Guoqing31ORCID

Affiliation:

1. Shandong University of Traditional Chinese Medicine, Jinan, Shandong,China

2. Beijing University of Traditional Chinese Medicine, Beijing, China

3. Affiliated Hospital of Shandong University of Traditional Chinese Medicine.,Jinan, Shandong,China

Abstract

Background:: Primary osteoporosis has increasingly become one of the risk factors affecting human health, and the clinical effect and action mechanism of traditional Chinese medicine in the treatment of primary osteoporosis have been widely studied. Previous studies have confirmed that in traditional Chinese medicine (TCM), Drynaria rhizome has a role in improving bone density. In this study, a tandem mass tag (TMT)-based proteomic analysis was conducted to derive potential targets for Drynaria rhizome treatment in postmenopausal osteoporosis. Methods:: The model group (OVX) and experimental group (OVXDF) for menopausal osteoporosis were established using the universally acknowledged ovariectomy method, and the OVXDF group was given 0.48g/kg Rhizoma Drynariae solution by gavage for 12 weeks. After 12 weeks, femurs of rats selected for this study were examined with a bone mineral density (BMD) test, Micro-CT, ELISABiochemical testing, hematoxylin and eosin (HE) staining, and immunohistochemistry. A certain portion of the bone tissue was studied with a TMT-based proteomic analysis and functional and pathway enrichment analysis. Finally, key target genes were selected for Western blotting for validation. Results:: The comparison of the OVXDF and OVX groups indicated that Drynaria rhizome could improve bone density. In the TMT-based proteomic analysis, the comparison of these two groups revealed a total of 126 differentially expressed proteins (DEPs), of which 62 were upregulated and 64 were downregulated. Further, by comparing the differential genes between the OVXDF and OVX groups and between the OVX and SHAM groups, we concluded that the 27 differential genes were significantly changed in the rats selected for the osteoporosis model after Drynaria rhizome intragastric administration. The gene ontology (GO) enrichment analysis of DEPs showed that molecular function was mainly involved in biological processes, such as glucose metabolism, carbohydrate metabolism, immune responses, and aging. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEPs revealed that multiple differential genes were enriched in the estrogen and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Relationships with nitrogen metabolism, glycerophospholipid metabolism, secretion systems, and tumor diseases were also observed. Western blotting was consistent with the analysis. Conclusions:: We used TMT-based proteomics to analyze the positive effects of TCM Drynaria rhizome, which can regulate related proteins through the unique roles of multiple mechanisms, targets, and pathways. This treatment approach can regulate oxidative stress, improve lipid metabolism, reduce the inflammatory response mechanism, and improve bone density. These benefits highlight the unique advantages of TCM in the treatment of primary osteoporosis.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3