GATA6 Suppresses Lung Adenocarcinoma Progression by Activating CFTR to Modulate Arachidonic Acid Metabolism

Author:

Lin Yong1,Chen Yushan2,Zhang Yi1,Weng Jianming3,Shen Rongqiang1,Zhang Wenshan1,Lin Yulin1

Affiliation:

1. Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, China

2. Department of Radiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, China

3. Department of Pathology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, China

Abstract

Background: CFTR, which belongs to the ATP-binding cassette transporter family and whose members are always involved in cancer progression, is implicated in lung adenocarcinoma (LUAD) progression, but the underlying mechanism remains undefined. Therefore, this study intended to investigate how CFTR works exactly on LUAD progression. background: CFTR, which belongs to the ATP-binding cassette transporter family whose members are always involved in cancer progression, is implicated in lung adenocarcinoma (LUAD) progression, but the underlying mechanism remains undefined. This study intends to investigate how CFTR works exactly on LUAD progression. Methods: Bioinformatics methods were utilized to analyze GATA6 and CFTR expression in LUAD and targeting relationship, followed by a pathway enrichment analysis of CFTR. GATA6 and CFTR expression levels were assessed by qRT-PCR. Cell viability and proliferation were detected through MTT and colony formation assays. An arachidonic acid (AA) assay kit was utilized to measure AA content. mRNA and protein expression levels of genes (cPLA2, COX-2, and CYP1A1) related to the AA metabolism pathway were detected by qRT-PCR and western blot, respectively. Moreover, the Dual-luciferase reporter gene assay and ChIP were used to verify the binding of GATA6 and CFTR promoters. Results: GATA6 and CFTR were lowly expressed in LUAD, and CFTR was enriched in the AA metabolism pathway. GATA6 activated CFTR transcription. Cellular and rescue experiments revealed that low or high CFTR expression could foster or hamper LUAD cell viability and proliferation, and concomitant treatment of indomethacin, an AA metabolism pathway inhibitor, mitigated stimulation on LUAD progression by low CFTR expression. Silencing of GATA6 reversed the suppressive impact of CFTR overexpression on LUAD progression via modulation of the AA metabolism pathway. Conclusion: The activation of CFTR by GATA6 hampered LUAD progression by modulating the AA metabolism pathway, suggesting that GATA6/CFTR axis might be a therapeutic target for LUAD patients.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3