A Study on Time Series Forecasting using Hybridization of Time Series Models and Neural Networks

Author:

Aijaz Iflah1,Agarwal Parul1

Affiliation:

1. Department of Computer Science and Engineering, Jamia Hamdard, New Delhi-62, India

Abstract

Introduction: Auto-Regressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) are leading linear and non-linear models in Machine learning respectively for time series forecasting. Objective: This survey paper presents a review of recent advances in the area of Machine Learning techniques and artificial intelligence used for forecasting different events. Methods: This paper presents an extensive survey of work done in the field of Machine Learning where hybrid models for are compared to the basic models for forecasting on the basis of error parameters like Mean Absolute Deviation (MAD), Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Normalized Root Mean Square Error (NRMSE). Results: Table 1 summarizes important papers discussed in this paper on the basis of some parameters which explain the efficiency of hybrid models or when the model is used in isolation. Conclusion: The hybrid model has realized accurate results as compared when the models were used in isolation yet some research papers argue that hybrids cannot always outperform individual models.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Short-term high-speed rail passenger flow prediction by integrating ensemble empirical mode decomposition with multivariate grey support vector machine;Engineering Applications of Artificial Intelligence;2024-10

2. Arctic and Antarctic Sea Ice Extent Forecasting using Hybrid LSTM Technique;Journal of Soft Computing Paradigm;2024-09

3. Arctic and Antarctic Sea Ice Extent Forecasting using hybrid LSTM Techniques;2024-06-07

4. Prediction of Emergency Room Arrivals of Patients with Preeclampsia Disease Using Artificial Neural Network Model;2024 IEEE 4th International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB);2024-04-19

5. Comparison of SVM and LSTM for Power Line Communication State Information Forecasting Using Streamlit Framework;2023 IEEE 14th International Conference on Software Engineering and Service Science (ICSESS);2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3