Glycation-induced Amyloid Formation in Proteins: An Emerging Perspective to Explore Diabetes Associated Onset of Neurodegenerative Symptoms

Author:

Prosad Banik Samudra1ORCID

Affiliation:

1. Department of Microbiology, Maulana Azad College, Kolkata 700013, India

Abstract

Abstract: Non-enzymatic protein glycation occurs spontaneously via the formation of sugarprotein Schiff adducts. The end products of this pathway are terminally misfolded proteins popularly known as Advanced Glycation End (AGE) Products. Glycated proteins account for a diverse spectrum of physiological maladies including arteriosclerosis, renal failure, diabetic complications, obesity, and neurological disorders. AGEs not only jeopardise the functionality of modified proteins but also induce the formation of Covalent protein cross-links. Glycation has the potential to induce the unfolding and refolding of globular proteins into cross-β structures thus resembling many amyloid deposits like amyloid beta, tau protein, and prions. However, glycation-induced amyloid formation is not a generic property of proteins; instead, it is guided by the nature and conformation of the protein, the type of glycation agent as well as the solution conditions governing the glycation reaction. The half-lives of AGE adducts are prolonged by their impaired proteasomal clearance since glycation modifies the lysine residues and renders them unavailable for ubiquitination. AGEs are cleared via sequestration with specific cell surface receptors (RAGE); subsequently, downstream signalling events involving MAPK and NF-κB result in the activation of inflammatory response or the apoptotic pathway. This perspective article discusses the current developments in understanding the various facets of glycationassociated protein aggregation and the corresponding development of amyloid-like entities.

Funder

University Grants Commission, Government of India

Publisher

Bentham Science Publishers Ltd.

Subject

Public Health, Environmental and Occupational Health,Nutrition and Dietetics,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3