ceRNA Network Analysis Reveals AP-1 Transcription Factor Components as Potential Biomarkers for Alzheimer’s Disease

Author:

Lu Yanjun1,Wang Xiong1,Wei Rui1,Hu Qi2

Affiliation:

1. Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 China

2. Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting the elderly, characterized by decreased cognitive function. Non-coding RNAs contribute to AD pathogenesis. Objective: To identify potential therapeutic targets for AD, competing endogenous RNA (ceRNA) networks were constructed using the hippocampus of 6-month-old amyloid precursor protein/ presenilin 1 double transgenic (APP/PS1) and wild-type mice. Methods: RNA-seq data (GSE158995), generated from the hippocampus of APP/PS1 and wild-type mice, were analyzed with the limma R package to identify significantly differentially expressed mRNAs and circRNAs (DEMs and DECs, respectively). DEM Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using Enrichr (https://maayanlab.cloud/Enrichr/). Correlations between DEMs and DECs were determined using the ggcorrplot R package. Main clusters and hub DEMs were selected using the STRING database and Cytoscape software. ceRNA interactions were predicted with the miRTarbase and Starbase tools and constructed with the ggalluvial R package and Cytoscape software. ceRNA networks were validated using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Results: 198 DEMs and 90 DECs were differentially expressed in APP/PS1 vs. wild-type hippocampus. DEM GO analysis revealed significant enrichment in transcription regulation, which was subdivided into three main clusters: transcription regulation, synaptic plasticity, and protein refolding. Within the transcription regulation cluster, AP-1 transcription factor components serve as hub genes. The mmu_circ_0001787(circGLCE)/miR-339-5p/Junb and mmu_circ_0001899(circFAM120C)/ miR-181a-5p/Egr1 ceRNA networks were established based on qRT-PCR and Western blot analysis. Conclusion: Two AP-1 transcription factor component-related ceRNA networks, circGLCE/miR- 339-5p/Junb and circFAM120C/miR-181a-5p/Egr1, were constructed using a mouse model of AD. These ceRNA networks may contribute to transcription regulation in AD and provide potential biomarkers for AD diagnosis and treatment.

Funder

National Natural Science Foundation of China

Tongji Hospital (HUST) Foundation for Excellent Young Scientists

Publisher

Bentham Science Publishers Ltd.

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3