Analysis of Aggregate Types with Micro-texture and Macro-texture Characteristics of Asphalt Mixture in Indonesia

Author:

Sulandari Eti,Subagio Bambang Sugeng,Rahman Harmein,Maha Indra

Abstract

Background: Micro-texture and macro-texture are two essential parameters that functionally evaluate friction on asphalt pavement surface. While micro-texture indicates the irregularity of aggregate using British Pendulum Tester (BPN), macro-texture shows the larger irregularity of asphalt mix surface using Mean Texture Depth (MTD). Both micro-texture and macro-texture contribute to increased skid resistance value, which is needed for road to meet the safety qualification. Aim: This study aims to investigate the effect of local aggregate types and aggregate proportion (%) on asphalt mix on pavement textures (micro and macro-texture). Methods: Laboratory experiments were conducted on four types of local aggregates (A, B, C, and D), which were carried from West Java, Indonesia, and aggregate has a different characteristic to each other. In addition, three asphalt mix types (SMA-fine, AC-WC, and HRS-WC), each containing varying proportion (%) of aggregates, were investigated to analyze change in texture on asphalt mix surface. Statistical analysis with two-way ANOVA was carried out to investigate the significance of aggregate type and asphalt mix type on pavement surface. Results: The results showed that each aggregate exhibited different characteristics chemically and mechanically. Four types of local aggregate possessed distinctive characteristics for the asphalt mix performance (i.e., OAC and density) and pavement textures. Statistically, it was clearly found that both aggregate type and asphalt mix type were strongly related to pavement texture. Conclusion: Therefore, the aggregate type and asphalt mix type with varying aggregate proportions (%), such as coarse aggregate (CA), aggregate-fine (FA), and filler (FF), affect the micro-texture and macro-texture.

Publisher

Bentham Science Publishers Ltd.

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3