Insights into the Role of DNA Methylation and Protein Misfolding in Diabetes Mellitus

Author:

Ahmed Sara M.1,Johar Dina2,Ali Mohamed Medhat2,El-Badri Nagwa1

Affiliation:

1. Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt

2. Biomedical Sciences Program, Zewail City of Science and Technology, Giza, Egypt

Abstract

Background: Diabetes mellitus is a metabolic disorder that is characterized by impaired glucose tolerance resulting from defects in insulin secretion, insulin action, or both. Epigenetic modifications, which are defined as inherited changes in gene expression that occur without changes in gene sequence, are involved in the etiology of diabetes. Methods: In this review, we focused on the role of DNA methylation and protein misfolding and their contribution to the development of both type 1 and type 2 diabetes mellitus. Results: Changes in DNA methylation in particular are highly associated with the development of diabetes. Protein function is dependent on their proper folding in the endoplasmic reticulum. Defective protein folding and consequently their functions have also been reported to play a role. Early treatment of diabetes has proven to be of great benefit, as even transient hyperglycemia may lead to pathological effects and complications later on. This has been explained by the theory of the development of a metabolic memory in diabetes. The basis for this metabolic memory was attributed to oxidative stress, chronic inflammation, non-enzymatic glycation of proteins and importantly, epigenetic changes. This highlights the importance of linking new therapeutics targeting epigenetic mechanisms with traditional antidiabetic drugs. Conclusion: Although new data is evolving on the relation between DNA methylation, protein misfolding, and the etiology of diabetes, more studies are required for developing new relevant diagnostics and therapeutics.

Funder

Science and Technology Development Fund

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3