Bisphenol A-Induced Endocrine Dysfunction and its Associated Metabolic Disorders

Author:

Calivarathan Latchoumycandane1ORCID,Maniradhan Meenu2

Affiliation:

1. Molecular Pharmacology and Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610 005, Tamil Nadu, India

2. Molecular Pharmacology and Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610 005, Tamil Nadu, India

Abstract

Abstract: Abstract: Bisphenol A (BPA) is an endocrine-disrupting chemical widely present in many consumer goods that poses a significant threat to our health upon exposure. Humans are exposed to BPA, which directly or indirectly causes endocrine dysfunctions that lead to metabolic disorders like obesity, fatty liver diseases, insulin resistance, polycystic ovarian syndrome, and other endocrine-related imbalances. The duration, quantity, and period of exposure to BPA, especially during the critical stage of development, determine its impact on reproductive and non-reproductive health. Because of its endocrine-disrupting effects, the European Chemical Agency has added BPA to the candidate list of chemicals of very high concern. Due to its estrogenic properties and structural similarities with thyroid hormones, BPA disrupts the endocrine system at different levels. It interacts with estrogen receptors at the molecular level and acts as an antagonist or agonist via an estrogen receptor-dependent signaling pathway. In particular, BPA binds to G-protein coupled receptors and estrogen receptors, activating signaling pathways that influence cellular apoptosis, proliferation, differentiation, and inflammation. BPA acts as an obesogen that promotes adipogenesis and correlates with increased lipid accumulation and elevated expression of adipogenic markers. As a metabolic and endocrine disruptor, BPA impairs cellular homeostasis by increasing oxidative mediators and decreasing antioxidant enzymes, resulting in mitochondrial dysfunction. Due to its endocrine-disrupting properties, BPA exposure induces endocrine dysfunctions, causing metabolic syndrome. This review gives a recent development and novel insights into the cellular and molecular mechanisms of BPA-induced endocrine dysfunctions and their associated metabolic disorders.

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3