Dysregulation of SIRT-1 Signaling in Multiple Sclerosis and Neuroimmune Disorders: A Systematic Review of SIRTUIN Activators as Potential Immunomodulators and their Influences on other Dysfunctions

Author:

Sharma Nidhi1,Shandilya Ambika1,Kumar Nitish1,Mehan Sidharth1ORCID

Affiliation:

1. Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India

Abstract

Immune dysregulation, neuronal inflammation, and oligodendrocyte degradation are key causes for autoimmune disorders like multiple sclerosis (MS) and various other immune dysregulated neurodegenerative complications responsible for CNS-mediated immune responses. Sirtuin (SIRT-1) is a nicotinamide adenosine dinucleotide (NAD)-dependent transcriptional protein that deacetylases and removes acetyl groups from its transcription factors like P53, FOXO, NF-Κb, PGC-1α. SIRT-1 mediates a wide range of physiological functions, including gene transcription, metabolism, neuronal apoptosis, and glucose production. SIRT-1 dysregulation targets transcription factors, and other molecular alterations such as gene expression modification influence neuronal plasticity, inhibit Th17 cells, and interleukin-1β can aggravate brain diseases. Preclinical and clinical findings show that the upregulation of SIRT-1 reduces autoimmunity, neurodegeneration, and neuroexcitation. Even though drugs are being developed for symptomatic therapies in clinical trials, there are particular pharmacological implications for improving post-operative conditions in neurodegenerative patients where intensive care is required. Understanding the SIRT-1 signaling and identifying immune-mediated neuron deterioration can detect major therapeutic interventions that could prevent neuro complications. Thus, in the current review, we have addressed the manifestations of disease by the downregulation of SIRT-1 that could potentially cause MS and other neurodegenerative disorders and provided data on existing available and effective drug therapies and disease management strategies.

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3