The impact of biodiesel blend ratio on vehicle performance and emissions

Author:

Bannister C D1,Hawley J G1,Ali H M1,Chuck C J1,Price P2,Chrysafi S S2,Brown A3,Pickford W3

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Avon, Bath, UK

2. Ford Motor Company Limited, Dunton, UK

3. BP, Pangbourne, Reading, UK

Abstract

Biodiesel is synthesized via the transesterification of triglycerides contained within vegetable, animal, or waste oils. First-generation biofuels are not the solution to global transport energy needs; however, biodiesel does have a role to play in reducing greenhouse gas emissions from the transport sector, so long as necessary production can be achieved in a sustainable manner without negative impact on plant and animal biodiversity. The biodiesel content within diesel sold to consumers is set to increase in the future, with implications on vehicle fuel consumption, emissions, and base engine durability. This study examines the effects of increasing the biodiesel blend ratio on the performance and emissions of a production vehicle equipped with a common-rail direct-injection diesel engine, evaluated on a chassis rolls dynamometer, at various ambient temperatures. Results obtained show that reductions in engine-out carbon monoxide and hydrocarbon emissions do not always translate to lower tailpipe emissions as reduced exhaust gas temperatures at higher blend ratios lead to reduced catalyst conversion efficiencies and higher total cycle emissions. Catalyst conversion efficiencies for carbon monoxide and hydrocarbons over the New European Drive Cycle (NEDC) are reduced by 9–19 per cent (depending on the ambient temperature) for a 50:50 blend (B50) compared with the petroleum diesel (B0) baseline. Increasing the blend ratio caused a linear decrease in the vehicle's maximum tractive force. This reduction was of the order of 5 per cent for a B50 blend at low vehicle speeds and 6–10 per cent at higher speeds, which is greater than would be expected on the basis of the differences in calorific values. Over the NEDC, the fuel consumption was found to increase with increasing blend ratio.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3