Micro/nanotribology using atomic force microscopy/friction force microscopy: State of the art

Author:

Bhushan B1

Affiliation:

1. The Ohio State University Computer Microtribology and Contamination Laboratory, Department of Mechanical Engineering Columbus, Ohio, USA

Abstract

Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of materials of scientific and engineering interest have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurement of atomic-scale friction of a freshly cleaved highly orientated pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement have been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope, suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macroscales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than macroscale friction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load, approaching the macrofriction at contact stresses higher than the hardness of the softer material. The wear rate for single-crystal silicon is negligible below 20 μN and is much higher and remains approximately constant at higher loads. Elastic deformation at low loads is responsible for negligible wear. The mechanism of material removal on a microscale is studied. At the loads used in the study, material is removed by the ploughing mode in a brittle manner without much plastic deformation. Most of the wear debris is loose. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nanoscratches. AFM has been modified to obtain load-displacement curves and for measurement of nanoindentation hardness and Young's modulus of elasticity, with the depth of indentation as low as 1 nm. Hardness of ceramics on the nanoscale is found to be higher than that on the microscale. Ceramics exhibit significant plasticity and creep on the nanoscale. Scratching and indentation on nanoscales are powerful ways to screen for adhesion and resistance to deformation of ultra-thin films. Detection of material transfer on the nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thickness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolayers and chemically bonded lubricant films with a mobile fraction are superior in wear resistance. Friction and wear on micro- and nanoscales at low loads have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help define the regimes for ultra-low friction and near-zero wear.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3