Optimum damage and surface roughness prediction in end milling glass fibre-reinforced plastics, using neural network and genetic algorithm

Author:

Razfar M R1,Zadeh M R Zanjani1

Affiliation:

1. Amirkabir University of Technology, Tehran, Iran

Abstract

This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, and depth of cut) and end mill flutes leading to minimum surface roughness and delamination factor in end milling of glass fibre reinforced plastics (GFRP) by coupling neural network (NN) and genetic algorithm (GA). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and genetic optimization method are exploited in an integrated manner. The genetically optimized neural network system (GONNS) is proposed for the selection of the optimal cutting conditions from the experimental data when an analytical model is not available. GONNS uses back-propagation (BP) type NNs to represent the input and output relations of the considered system. The GA obtains the optimal operational conditions through using the NNs. From this, it can be clearly seen that a good agreement is observed between the predicted values and the experimental measurements.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3