A procedure for evaluating high residual stresses using the blind hole drilling method, including the effect of plasticity

Author:

Beghini M1,Bertini L1,Santus C1

Affiliation:

1. Dipartimento di Ingegneria, Meccanica Nucleare e della Produzione, Universitá di Pisa, Pisa, Italy

Abstract

When the blind hole drilling method is used to evaluate high residual stresses in a metallic component, plastic relaxed strain can be produced in the hole region because of the stress concentration that causes the local stresses to reach yielding. By assuming a linear–elastic behaviour of the material, a significant error can result. The present paper analyses the phenomenon of the plasticity locally induced by the introduction of the hole and proposes a procedure to take into account its effects on the residual stress evaluation. The correcting procedure has been developed by elaborating a large database of elastic–plastic finite element analyses performed considering a wide range of material properties and testing parameters, including all the strain gauge rosettes commonly used. As plasticity induces non-linearity in the relationship between residual stress and relaxed strain, the superposition principle cannot be applied, so the correction is limited to uniform in-depth residual stress fields. However, four hole depths were considered and the related correcting procedures were provided. When variable through thickness residual stress is expected, and high residual stress is confined near the surface region, the correction procedure can be applied to an initial limited depth.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3