Finite element modelling of stretch-blow moulding of PET bottles using Buckley model: Plant tests and effects of process conditions and material parameters

Author:

Yang Z. J.1,Harkin-Jones E. M. A.2,Armstrong C. G.2,Menary G. H.2

Affiliation:

1. Zhejiang University College of Civil Engineering and Architecture Hangzhou, PR China

2. Queen's University Belfast School of Mechanical and Manufacturing Engineering Belfast, UK

Abstract

Plant tests and finite element (FE) analyses of the injection stretch-blow moulding (ISBM) process of polyethylene terephthalate (PET) bottles have been carried out in this study with a view to optimizing preform designs and process conditions. Plant tests were carefully conducted at first to make bottles in a 330 ml mould from four preform designs under different process conditions. Both a digital handheld thermometer and a FLIR ThermoCAM Imager system were used to measure the initial preform temperature distributions (IPTDs). Comprehensive FE analyses using ABAQUS were then carried out to model the ISBM of these bottles, using a physically based model (Buckley model) to model the complex constitutive behaviour of PET. It was found that the numerical simulations often resulted in free blowing or over-thinning of the bottle bottoms when the measured IPTDs and process conditions were modelled. Parametric studies of the IPTDs, the pre-blowing pressure and the material parameters of the Buckley model were carried out. It was demonstrated that all of them had considerable effects on the effectiveness of FE modelling. In particular, the stress-strain relations modelled by the Buckley model were very sensitive to two parameters used to model the strain-stiffening behaviour. By carefully adjusting the material parameters and process conditions, successful simulations with excellent bottle thickness predictions were then achieved. It is concluded that the model parameters must be obtained by accurately testing the bottle-grade PET with similar process conditions to those in industrial ISBM so that the Buckley model can be confidently used to model the ISBM process. It is also found that good predictions of bottle wall thickness alone do not necessarily justify the numerical modelling. Validation of the deformation process may be equally important.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3