Effects of increased injection pressures of up to 1000 bar – opportunities in stratified operation in a direct-injection spark-ignition engine

Author:

Buri S1,Kubach H1,Spicher U1

Affiliation:

1. Karlsruhe Institute of Technology, Institut fuer Kolbenmaschinen, Karlsruhe, Germany

Abstract

The gasoline direct-injection engine with spray-guided combustion is one of the most promising strategies to reduce fuel consumption and CO2 emissions of spark-ignition engines. This benefit results primarily from lean and unthrottled operation, which is realized with a highly stratified mixture at part load. At the upper load limit of stratified charge operation, charge stratification is insufficient to realize substantial fuel economy benefits, especially when using multihole injectors. This can be attributed to a lower injector flowrate than is available from outward-opening piezo injectors. One measure to increase the flowrate is to increase the injection pressure. A higher stratification gradient thereby can be achieved, which leads to combustion at richer air–fuel ratios. As a result, combustion duration and hydrocarbon emissions decrease. The enhanced evaporation due to the increased injection pressure reduces soot emissions. This paper presents the results of thermodynamic and optical investigations at the upper load limit of stratified charge operation in a spray-guided direct-injection engine. To this end, variations of the injection pressure from 200 to 1000 bar are performed. The associated effects on mixture preparation and soot formation are investigated. The mixture preparation process and flame propagation information are recorded using a high-speed intensified complementary metal oxide semiconductor (CMOS) camera. In order to investigate soot formation and oxidation behaviour, soot concentrations are measured using the extended two-colour method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Reference1 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3