Improved centrifugal compressor impeller optimization with a radial basis function network and principle component analysis

Author:

Ma Y1,Engeda A1,Cave M2,Liberti J-L Di2

Affiliation:

1. Department of Mechanical Engineering, Michigan State University, Turbomachinery Lab, Michigan, USA

2. Solar Turbines Inc., San Diego, California, USA

Abstract

The development of a fast and reliable computer-aided design and optimization procedure for centrifugal compressors has attracted a great deal of attention both in the industry and in academia. Artificial neural networks (ANNs) have been widely used to create an approximate performance map to substitute the direct application of flow solvers in the optimization procedure. Although ANNs greatly decrease the computational time for the optimization, their accuracies still limit their applications. Furthermore, ANNs also bring errors to the final results. In this study, principal component analysis (PCA) or independent component analysis (ICA) is applied to transform the training database and make a radial basis function network (RBFN), a type of ANN, trained in a new coordinate system. The present study compares the accuracies of three different trained ANNs: RBFN, RBFN with PCA, and RBFN with ICA. Furthermore, the total performances of the centrifugal compressor impeller optimization procedures using these three different trained ANNs are compared. Genetic algorithm (GA) is used as an optimization method in the optimization procedure and influences of GA parameters on the optimization procedure performances are also studied. All results demonstrate that the application of PCA significantly increases the accuracy of trained ANN as well as the total performance of the centrifugal compressor impeller optimization procedure.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3