A new method for quantitative evaluation of perceived sounds from mechanical heart valve prostheses

Author:

Johansen P1,Riis C2,Hasenkam J M3,Paulse P K1,Nygaard H1

Affiliation:

1. Aarhus University Hospital, Skejby Sygehus Department of Cardiothoracic and Vascular Surgergy Denmar

2. Engineering College of Aarhus Denmar

3. Aarhus University Hospital, Skejby Sygehus Institute of Experimental Clinical Research Denmark

Abstract

Closing clicks from mechanical heart valve prostheses are transmitted to the patient's inner ear mainly in two different ways: as acoustically transmitted sound waves, and as vibrations transmitted through bones and vessels. The purpose of this study was to develop a method for quantifying what patients perceive as sound from their mechanical heart valve prostheses via these two routes. In this study, 34 patients with implanted mechanical bileaflet aortic and mitral valves (St Jude Medical and On-X) were included. Measurements were performed in a specially designed sound insulated chamber equipped with microphones, accelerometers, preamplifiers and a loudspeaker. The closing sounds measured with an accelerometer on the patient's chest were delayed 400 ms, amplified and played back to the patient through the loudspeaker. The patient adjusted the feedback sound to the same level as the ‘real-time’ clicks he or she perceived directly from his or her valve. In this way the feedback sound energy includes both the air- and the bone-transmitted energies. Sound pressure levels (SPLs) were quantified both in dB(A) and in the loudness unit sone according to ISO 532B (the Zwicker method). The mean air-transmitted SPL measured close to the patient's ear was 23 ± 4dB(A). The mean air- and bone-transmitted sounds and vibrations were perceived by the patients as an SPL of 34 ± 5dB(A). There was no statistically significant difference in the perceived sound from the two investigated bileaflet valves, and no difference between aortic and mitral valves. The study showed that the presented feedback method is capable of quantifying the perceived sounds and vibrations from mechanical heart valves, if the patient's hearing is not too impaired. Patients with implanted mechanical heart valve prostheses seem to perceive the sound from their valve two to three times higher than nearby persons, because of the additional bone-transmitted vibrations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3