Unsteady behaviour of the tip clearance vortex in a rotor equivalent compressor cascade

Author:

Schrapp H1,Stark U1,Saathoff H1

Affiliation:

1. Institut für Strömungsmechanik, Technische Universität Braunschweig, Braunschweig, Germany

Abstract

From earlier experimental investigations in a single-stage axial-flow pump and different numerical calculations of the flow in single-stage axial-flow compressors, it is known that vortex breakdown of the tip clearance vortex can take place in turbomachines, although an experimental proof for subsonic compressors is lacking. Vortex breakdown, if existent, is a source of high instability in the sensitive tip region of axial-flow pumps and compressors and will also play an important role in the stall inception process. Therefore, the flow in a linear compressor cascade with a 3 per cent tip clearance to one side has been investigated at different flow angles from the design point up to the stability limit of the cascade. The cascade resembles the tip section of a single-stage, axial-flow, low-speed compressor that is also in use at the Technical University of Braunschweig. The measuring techniques used were (a) a commercial particle image velocimetry (PIV) system and (b) a pressure measuring system with several flush mounted high-response pressure transducers at selected locations where the vortex was expected. As the cascade approaches its stall limit, the analysis of the pressure signals in the frequency domain revealed a bump of increased amplitude at a certain non-dimensional frequency for some of the measuring positions. The measuring positions that exhibited the bump correlated very well with a paraboloid-shaped region of high standard deviation enveloping an area of very low momentum fluid. It is shown that the frequency of the striking bump corresponds to the rotational frequency of the vortex calculated from the PIV measurements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3