Wheel-rail dynamics with closely conformal contact Part 2: Forced response, results and conclusions

Author:

Bhaskar J1,Johnson K. L.1,Woodhouse J1

Affiliation:

1. Cambridge University Engineering Department

Abstract

The linearized dynamic models for the conformal contact of a wheel and rail presented in reference (1) have been used to calculate the dynamic response to a prescribed sinusoidal ripple on the railhead. Three models have been developed: single-point contact with low or high conformity, and two-point contact. The input comprises a normal displacement Δeiwt together with a rotation Δeiwt applied to the railhead. The output comprises rail displacements and forces, contact creepages and forces, and frictional energy dissipation. According to the Frederick-Valdivia hypothesis, if this last quantity has a component in phase with the input ripple, the amplitude of the ripple will be attenuated, and vice versa. Over most of the frequency range, a pure displacement input (Ψ = 0) was found to give rise, predominantly, to a normal force at the railhead. A purely rotational input (Δ = 0) caused a single point of contact to oscillate across the railhead or, in the case of two-point contact, to give rise to fluctuating out-of-phase forces at the two points. The general tenor of behaviour revealed by the three models was similar: frictional energy dissipation, and hence wear, increases with conformity and is usually of such a phase as to suppress corrugation growth. Thus the association, found on the Vancouver mass transit system, of corrugations with the development of close conformity between wheel and rail profiles must arise from some feature of the system not included in the present models.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3