The influence of lubricant on the morphology of ultra-high molecular weight polyethylene wear debris generated in laboratory tests

Author:

Besong A A1,Tipper J L2,Mathews B J2,Ingham E2,Stone M H3,Fisher J1

Affiliation:

1. University of Leeds School of Mechanical Engineering UK

2. University of Leeds Department of Microbiology UK

3. The General Infirmary Department of Orthopaedics Leeds, UK

Abstract

Since the implication of polyethylene wear debris as a major cause of osteolysis in total joint replacements, there has been much interest in polyethylene wear studies and in cell culture studies using ultra-high molecular weight polyethylene (UHMWPE) wear debris. Studies have shown that particles in the 0.1-10 μm size range are particularly important in causing adverse cellular reactions resulting in osteolysis. The morphology, the mass and size distributions, and the number of wear particles produced at the joint surfaces are influenced by the tribological conditions at the joint. Laboratory wear tests are used to investigate the wear properties of prosthetic joint materials and different research groups have used different lubricants in these tests. This paper shows that the volumetric wear and morphology of UHMWPE particles generated in vitro are influenced by the type of lubricant used. This study compared, quantitatively, UHMWPE wear debris generated in deionized water to debris that was generated in a system lubricated by bovine serum which was diluted to 25 per cent. The wear factors of UHMWPE in water and serum lubricants were significantly different ( p<0.05). UHMWPE wore 14 times more in water than in serum. Quantitative analysis of the wear particles showed that the debris that was generated in serum was morphologically different from debris that was produced in a water-lubricated system. Furthermore, the particles produced in serum showed a closer similarity to those found in retrieved acetabular tissues.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3