The design of a vibration transducer to monitor the integrity of dental implants

Author:

Cawley P1,Pavlakovic B1,Alleyne D N1,George R1,Back T2,Meredith N3

Affiliation:

1. Imperial College of Science, Technology and Medicine Department of Mechanical Engineering London

2. Nobel Biocare AB Gothenburg, Sweden

3. Goteborg University Department of Oral and Dental Science, Bristol Dental Hospital and School, Bristol and Department of Biomaterials/Handicap Research, Institute for Surgical Sciences Gothenburg, Sweden

Abstract

Bone-anchored titanium implants are being used increasingly to provide support for prostheses replacing missing teeth in edentulous and partially dentate patients. A technique is required to monitor bone formation at the implant-tissue interface during healing, and also to check whether there has been bone loss from around the top of the implant. One possible method is to screw a beam into the implanted fixture and to measure the first flexural resonance frequency of the resulting system. This resonance frequency is affected by both the exposed length of fixture and the stiffness of the interface between the implant and the bone. This paper describes the design of a beam-like transducer for clinical trials of the technique. The sensitivity of the transducer resonance frequency to the changes of interest is dependent on the thickness and length of the beam element. However, the choice of these dimensions is constrained by the need to avoid closely spaced resonances. The performance of different transducer shapes and the influence of the thickness and length of the beam element in the transducer has been studied. The results have been used to finalize a transducer design for the clinical trials.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3