Mechanics of the passive knee joint. Part 2: Interaction between the ligaments and the articular surfaces in guiding the joint motion

Author:

Amiri S1,Cooke D1,Kim I Y1,Wyss U1

Affiliation:

1. Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada

Abstract

The aim of this study was to examine how the interaction between ligament tensions and contact forces guides the knee joint through its specific pattern of passive motion. A computer model was built based on cadaver data. The passive motion and the ligament lengthening and force patterns predicted by the model were verified with data from the literature. The contribution of each ligament and contact force was measured in terms of the rotational moment that it produced about the tibial medial plateau and the anterior-posterior (AP) force that it exerted on the tibia. The high tension of the anterior cruciate ligament (ACL) and the geometric constraints of the anterior horns of the menisci were found to be key features that stabilized the knee at full extension. The mutual effect of the cruciates was found as the reason for the screw-home mechanism at early flexion. Past 30°, the AP component of contact force on the convex geometry of the lateral tibial plateau and tension of the lateral collateral ligament (LCL) were identified as elements that control the joint motion. From 60° to 90°, reduction in the tension of the ACL was determined as a reason for continuation of the tibial anterior translation. From 90° to 120°, increase in the tension of the posterior cruciate ligament and the AP component of the contact force on the convex geometry of the lateral tibial plateau pushed the tibia more anteriorly. This anterior translation was limited by the constraining effects of the ACL tension and the AP component of the contact force on the medial meniscus. The important guiding role observed for the LCL suggests that it should not be overlooked in knee models.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3