Design and analysis of low-stress and low-noise lightweight railway wheel

Author:

Akama M1,Sasakura M1,Furuno K2

Affiliation:

1. Vehicle Structure Technology Division, Railway Technical Research Institute, Tokyo, Japan

2. Computational Science and Engineering Division 1, Advance Soft, Tokyo, Japan

Abstract

The finite-element and boundary-element methods were applied to develop the low-stress and low-noise lightweight railway wheel. First, stress analyses for the existing wheels under the condition of drag braking or track loading were performed. Following these analyses, a design methodology was developed and applied, leading to the development of new plate shapes of the wheel, whose stresses generated were lower than those of conventional wheels. Candidate plate shapes were selected based on the analyses. Next, eigenvalue analyses and transient dynamic analyses were carried out for the wheels. At the same time, to verify the analytical results, these wheels were manufactured and experiments implemented. Finally, acoustic analyses were performed and results compared with those obtained by field measurements. From this study, a new plate shape of the lightweight railway wheel was obtained, which reduces the radiated noise as well as the maximum stresses generated in the plate region to a remarkable extent.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel computing of wheel-rail contact;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2019-10-08

2. Improving the design of the traction motor of trains to reduce the aerodynamic noise;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2019-04-11

3. Parallel computing in railway research;International Journal of Rail Transportation;2018-12-01

4. Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2015-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3