Absolutely Complex Balanced Kinetic Systems

Author:

Jose Editha C., ,Talabis Dylan Antonio SJ.,Mendoza Eduardo R.

Abstract

A complex balanced kinetic system is absolutely complex balanced (ACB) if every positive equilibrium is complex balanced. Two results on absolute complex balancing were foundational for modern chemical reaction network theory (CRNT): in 1972, M. Feinberg proved that any deficiency zero complex balanced system is absolutely complex balanced. In the same year, F. Horn and R. Jackson showed that the (full) converse of the result is not true: any complex balanced mass action system, regardless of its deficiency, is absolutely complex balanced. In this paper, we present initial results on the extension of the Horn and Jackson ACB Theorem. In particular, we focus on other kinetic systems with positive deficiency where complex balancing implies absolute complex balancing. While doing so, we found out that complex balanced power law reactant determined kinetic systems (PL-RDK) systems are not ACB. In our search for necessary and sufficient conditions for complex balanced systems to be absolutely complex balanced, we came across the so-called CLP systems (complex balanced systems with a desired "log parametrization" property). It is shown that complex balanced systems with bi-LP property are absolutely complex balanced. For non-CLP systems, we discuss novel methods for finding sufficient conditions for ACB in kinetic systems containing non-CLP systems: decompositions, the Positive Function Factor (PFF) and the Coset Intersection Count (CIC) and their application to poly-PL and Hill-type systems.

Publisher

University Library in Kragujevac

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Absolute Concentration Robustness in Rank-One Kinetic Systems;Match Communications in Mathematical and in Computer Chemistry;2023-10

2. Chaotic Behavior of Lorenz-Based Chemical System under the Influence of Fractals;Match Communications in Mathematical and in Computer Chemistry;2023-10

3. Comparative analysis of carbon cycle models via kinetic representations;Journal of Mathematical Chemistry;2023-01-07

4. Positive equilibria of power law kinetics on networks with independent linkage classes;Journal of Mathematical Chemistry;2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3