Evaluation of classification performances of minimum spanning trees by 13 different metrics

Author:

Todeschini Roberto, ,Valsecchi Cecile

Abstract

Minimum Spanning Tree (MST) is a well-known clustering algorithm that provides a graphical tree representation of the objects in a data set by exploiting local information to link each pair of similar objects. The a-posteriori analysis of this tree in terms of nodes and edges provides the basis to derive simple classifiers, namely semi-supervised classification approaches based on the minimum spanning tree approach. In this work, we propose different metrics to evaluate the MST ability to group objects of the same a-priori known classes. The classification capability of the proposed approach, using 13 different distance measures, was compared with that of classical supervised classification approaches such as N-Nearest Neighbour (N3), Binned Nearest Neighbour (BNN), Partial Least SquaresDiscriminant Analysis (PLS-DA), K-Nearest Neighbour (KNN), exponentially weighted K-Nearest Neighbour (wKNN) and Support Vector Machine with radial functions (SVMRBF) on 31 data sets. The proposed approach resulted to be competitive and comparable with the considered classical supervised classification methods. Finally, we analysed the role of the 13 different measures in terms of performance and percentage of not-assigned objects.

Publisher

University Library in Kragujevac

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3