Modeling and calculation power saving modes grain drying materials under energy fields

Author:

Hryshchenko V. O.,

Abstract

Storing grain quality materials in post harvest handling and storage is largely dependent on correctly implemented the drying process. In agricultural production mainly use costly convection dryer. The main share of wasteful energy consumption accounts for heat drying agent, some heat is lost to the environment through the working surface of the dryers and spent coolant. Ways to reduce these energy costs is to reduce the amount of drying agent in the process to the level necessary to absorb and remove moisture from the dryer and the working volume of the principles of targeted "delivery" of energy to vysushuyemoho material. Last principles successfully implemented using contactless energy supply of electromagnetic fields in a material exposure by microwave or infrared radiation. The article deals with the theoretical background processes of drying material in cyclic mode with infrared heating and high frequency electromagnetic field. The equations change over time settings grain material by heating using high frequency electromagnetic field or infrared light and ventilation in the grain does not allow heated air drying cycle count process. The algorithm calculating the overall process of drying cycle to determine rational modes of the process, providing minimize energy costs. The article deals with the theoretical background processes of drying material in cyclic mode with infrared heating and high frequency electromagnetic field. The equations change over time settings grain material by heating using high frequency electromagnetic field or infrared light and ventilation in the grain does not allow heated air drying cycle count process. The algorithm calculating the overall process of drying cycle to determine rational modes of the process, providing minimize energy costs. The article deals with the theoretical background processes of drying material in cyclic mode with infrared heating and high frequency electromagnetic field. The equations change over time settings grain material by heating using high frequency electromagnetic field or infrared light and ventilation in the grain does not allow heated air drying cycle count process. The algorithm calculating the overall process of drying cycle to determine rational modes of the process, providing minimize energy costs. The equations change over time settings grain material by heating using high frequency electromagnetic field or infrared light and ventilation in the grain does not allow heated air drying cycle count process. The algorithm calculating the overall process of drying cycle to determine rational modes of the process, providing minimize energy costs. The equations change over time settings grain material by heating using high frequency electromagnetic field or infrared light and ventilation in the grain does not allow heated air drying cycle count process. The algorithm calculating the overall process of drying cycle to determine rational modes of the process, providing minimize energy costs.

Publisher

National University of Life and Environmental Sciences of Ukraine

Subject

General Arts and Humanities

Reference14 articles.

1. Characterization of oilseeds mechanical expression in an instrumented pilot screw press;Bogaert;Industrial Crops and Products,2018

2. 2. Dobrin D., Magureanu M., Mandache N., Ionita M. (2015). The effect of non-thermal plasma treatment on wheat germination and early growth. Innovative Food Science & Emerging Technologies. 29. 255-260. https://doi.org/10.1016/j.ifset.2015.02.006.

3. 3. Gorji A., Rajabipour A., Tavakoli H. (2010). Fracture resistance of wheat grain as a function of moisture content, loading rate and grain orientation. Australian Journal of Crop Science. 4. 448-452.

4. 4. Kotov B., Kalinichenko R., Spirin A. (2015). Mathematical modeling of heat and mass transfer process under heat treatment of grain materials in dense layer. TEKA. Commission of Motorization and Energetics in Agriculture. 17(5). 54-57.

5. 5. Kotov B. I., Spirin А. В., Tverdokhlib I. V., Polyevoda Y. A., Hryshchenko V. O., Kalinichenko R. A. (2018). Theoretical researches of cooling process regularity of the grain material in the layer. INMATEH: Agricultural Engineering. 54(1). 87-94.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3