Biomechanical effects of the tibial slope angle change on total knee prosthesis: 3D finite elements analysis

Author:

Arı Bunyamin1ORCID,Korkmaz Murat2,Özer Alaettin

Affiliation:

1. Evliya Celebi Training and Research Hospital, Kütahya, Turkey

2. E

Abstract

: In total knee arthroplasty, finding the correct tibial slope angle while placing the prosthesis affects the joint load. In our study; the load on the tibial insert and the notch of the insert as a result of flexion of the knee joint 0-30-60-90 degrees at each inclination in prostheses applied with posterior inclination angles of 0,3,5 and 7 degrees was examined in the three-dimensional right knee finite element structural model. In this way, it was aimed to reveal at which slope the resulting load is the lowest. The finite element structural model was created using the 3D 2.5 number right knee solid model. Two types of analysis were performed to examine the effect of angle change of the PE Insert on tibia component; static structural analysis with static loads at certain fixed flexion angles, and transient analysis with time for varying loadings at dynamically changing flexion angles with rotation of the knee between 0-90 degrees. In the 0 and 30 degree models, the least load on the tibial insert was found at 7 degree tibial slop angle (11.6 and 9.87 mpa, respectively), in 60 and 90 degree models at 5 degree tibial slop angle (9.07 and 11.4 mpa respectively). In the models of 0 and 30 degrees, no pressure occured on the tibial insert notch at 3,5,7 degrees of tibial slop angles, while in the 60 degree model, a pressure of 0,153 MPa occured at all 0,3,5,7 degrees at 0 degrees tibial insert slop angle and this pressure was centered at the junction with the tibial insert. The higher the load on the tibial insert, the greater wear of the tibial insert in the knee prosthesis. For this reason, it is important with which slop angle the tibial insert should be placed during surgery.

Publisher

IP Innovative Publication Pvt Ltd

Subject

General Arts and Humanities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3