Self-optimizing AST interpreters

Author:

Würthinger Thomas1,Wöß Andreas2,Stadler Lukas2,Duboscq Gilles2,Simon Doug3,Wimmer Christian4

Affiliation:

1. Oracle Labs, Linz, Austria

2. Johannes Kepler University Linz, Linz, Austria

3. Oracle Labs, Zurich, Switzerland

4. Oracle Labs, Redwood Shores, CA, USA

Abstract

An abstract syntax tree (AST) interpreter is a simple and natural way to implement a programming language. However, it is also considered the slowest approach because of the high overhead of virtual method dispatch. Language implementers therefore define bytecodes to speed up interpretation, at the cost of introducing inflexible and hard to maintain bytecode formats. We present a novel approach to implementing AST interpreters in which the AST is modified during interpretation to incorporate type feedback. This tree rewriting is a general and powerful mechanism to optimize many constructs common in dynamic programming languages. Our system is implemented in Java and uses the static typing and primitive data types of Java elegantly to avoid the cost of boxed representations of primitive values in dynamic programming languages.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quff: A Dynamically Typed Hybrid Quantum-Classical Programming Language;Proceedings of the 21st ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes;2024-09-13

2. On Polyglot Program Testing;Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering;2024-07-10

3. SecV;Proceedings of the 24th International Middleware Conference on ZZZ;2023-11-27

4. Automatically Generated Supernodes for AST Interpreters Improve Virtual-Machine Performance;Proceedings of the 22nd ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences;2023-10-22

5. Evaluating YJIT’s Performance in a Production Context: A Pragmatic Approach;Proceedings of the 20th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3