SketchDream: Sketch-based Text-To-3D Generation and Editing

Author:

Liu Feng-Lin12ORCID,Fu Hongbo3ORCID,Lai Yu-Kun4ORCID,Gao Lin12ORCID

Affiliation:

1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

3. City University of Hong Kong, Hongkong, China

4. Cardiff University, cardiff, United Kingdom

Abstract

Existing text-based 3D generation methods generate attractive results but lack detailed geometry control. Sketches, known for their conciseness and expressiveness, have contributed to intuitive 3D modeling but are confined to producing texture-less mesh models within predefined categories. Integrating sketch and text simultaneously for 3D generation promises enhanced control over geometry and appearance but faces challenges from 2D-to-3D translation ambiguity and multi-modal condition integration. Moreover, further editing of 3D models in arbitrary views will give users more freedom to customize their models. However, it is difficult to achieve high generation quality, preserve unedited regions, and manage proper interactions between shape components. To solve the above issues, we propose a text-driven 3D content generation and editing method, SketchDream, which supports NeRF generation from given hand-drawn sketches and achieves free-view sketch-based local editing. To tackle the 2D-to-3D ambiguity challenge, we introduce a sketch-based multi-view image generation diffusion model, which leverages depth guidance to establish spatial correspondence. A 3D ControlNet with a 3D attention module is utilized to control multi-view images and ensure their 3D consistency. To support local editing, we further propose a coarse-to-fine editing approach: the coarse phase analyzes component interactions and provides 3D masks to label edited regions, while the fine stage generates realistic results with refined details by local enhancement. Extensive experiments validate that our method generates higher-quality results compared with a combination of 2D ControlNet and image-to-3D generation techniques and achieves detailed control compared with existing diffusion-based 3D editing approaches.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation for Distinguished Young Scholars

Beijing Municipal Science and Technology Commission

Publisher

Association for Computing Machinery (ACM)

Reference74 articles.

1. Learning to generate line drawings that convey geometry and semantics

2. Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003. On visual similarity based 3D model retrieval. In Computer Graphics Forum, Vol. 22. Wiley Online Library, 223--232.

3. Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation

4. Sketch2Photo

5. Control3D: Towards Controllable Text-to-3D Generation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3