A Sentiment Treebank and Morphologically Enriched Recursive Deep Models for Effective Sentiment Analysis in Arabic

Author:

Baly Ramy1ORCID,Hajj Hazem1,Habash Nizar2,Shaban Khaled Bashir3,El-Hajj Wassim1

Affiliation:

1. American University of Beirut, Beirut, Lebanon

2. New York University Abu Dhabi, United Arab Emirates

3. Qatar University, Doha, Qatar

Abstract

Accurate sentiment analysis models encode the sentiment of words and their combinations to predict the overall sentiment of a sentence. This task becomes challenging when applied to morphologically rich languages (MRL). In this article, we evaluate the use of deep learning advances, namely the Recursive Neural Tensor Networks (RNTN), for sentiment analysis in Arabic as a case study of MRLs. While Arabic may not be considered the only representative of all MRLs, the challenges faced and proposed solutions in Arabic are common to many other MRLs. We identify, illustrate, and address MRL-related challenges and show how RNTN is affected by the morphological richness and orthographic ambiguity of the Arabic language. To address the challenges with sentiment extraction from text in MRL, we propose to explore different orthographic features as well as different morphological features at multiple levels of abstraction ranging from raw words to roots. A key requirement for RNTN is the availability of a sentiment treebank; a collection of syntactic parse trees annotated for sentiment at all levels of constituency and that currently only exists in English. Therefore, our contribution also includes the creation of the first Arabic Sentiment Treebank (A r S en TB) that is morphologically and orthographically enriched. Experimental results show that, compared to the basic RNTN proposed for English, our solution achieves significant improvements up to 8% absolute at the phrase level and 10.8% absolute at the sentence level, measured by average F1 score. It also outperforms well-known classifiers including Support Vector Machines, Recursive Auto Encoders, and Long Short-Term Memory by 7.6%, 3.2%, and 1.6% absolute respectively, all models being trained with similar morphological considerations.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference61 articles.

1. 2015. Internet World Stats: Internet World Users by Language. Retrieved from http://www.internetworldstats.com/. 2015. Internet World Stats: Internet World Users by Language. Retrieved from http://www.internetworldstats.com/.

2. Sentiment analysis in multiple languages

3. SAMAR: Subjectivity and sentiment analysis for Arabic social media

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3