Deriving with Derivatives: Optimizing Incremental Fixpoints for Higher-Order Flow Analysis

Author:

Quiring Benjamin1ORCID,Van Horn David1ORCID

Affiliation:

1. University of Maryland, College Park, USA

Abstract

At the heart of efficient program analysis implementations are incremental solutions to fixpoint problems. These solutions can be interpreted as the derivative of the underlying analysis function. Methods that describe how to systematically derive higher-order analyses from program semantics, such as Abstracting Abstract Machines, don’t shed light on how to efficiently implement those analyses. In this paper, we explore complementary techniques to optimize the derivative computation towards deriving efficient implementations. In particular, we use static specializations (by partial evaluation and rewriting) and dynamic specializations (in the form of tracking dependencies during the fixpoint), yielding efficient incremental fixpoints. We present how these optimizations apply to an example analysis of continuation-passing-style λ-calculus, and describe how they pair particularly well with tunable and optimized workset-based fixpoint methods. We demonstrate the efficacy of this approach on a flow analysis for the Standard ML language, yielding an average speed-up of 56x over an existing fixpoint method for higher-order analyses from the literature.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Reference20 articles.

1. Serge Abiteboul Richard Hull and Victor Vianu. 1995. Foundations of Databases. isbn:0-201-53771-0

2. Michael Arntzenius. 2017. Static differentiation of monotone fixed points. http://www.rntz.net/files/fixderiv.pdf

3. Seminaïve evaluation for a higher-order functional language

4. Francois Bancilhon. 1986. Naive Evaluation of Recursively Defined Relations. Springer-Verlag, Berlin, Heidelberg. 165–178. isbn:0387963820

5. Abstract compilation: A new implementation paradigm for static analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3