ControlMat: A Controlled Generative Approach to Material Capture

Author:

Vecchio Giuseppe1ORCID,Martin Rosalie2ORCID,Roullier Arthur3ORCID,Kaiser Adrien2ORCID,Rouffet Romain2ORCID,Deschaintre Valentin4ORCID,Boubekeur Tamy3ORCID

Affiliation:

1. Research, Adobe Systems Inc, Lyon, France and Electrical Electronic and Computer Engineering, University of Catania, Catania, Italy

2. Research, Adobe Systems Inc, Lyon, France

3. Research, Adobe Systems Inc, Paris, France

4. Research, Adobe Systems Inc, London, United Kingdom of Great Britain and Northern Ireland

Abstract

Material reconstruction from a photograph is a key component of 3D content creation democratization. We propose to formulate this ill-posed problem as a controlled synthesis one, leveraging the recent progress in generative deep networks. We present ControlMat, a method which, given a single photograph with uncontrolled illumination as input, conditions a diffusion model to generate plausible, tileable, high-resolution physically-based digital materials. We carefully analyze the behavior of diffusion models for multi-channel outputs, adapt the sampling process to fuse multi-scale information and introduce rolled diffusion to enable both tileability and patched diffusion for high-resolution outputs. Our generative approach further permits exploration of a variety of materials that could correspond to the input image, mitigating the unknown lighting conditions. We show that our approach outperforms recent inference and latent-space optimization methods, and we carefully validate our diffusion process design choices. 1

Publisher

Association for Computing Machinery (ACM)

Reference73 articles.

1. Adobe. 2022. Substance Source. (2022). Retrieved July 2022 from https://substance3d.adobe.com/assets/

2. Pranav Aggarwal Hareesh Ravi Naveen Marri Sachin Kelkar Fengbin Chen Vinh Khuc Midhun Harikumar Ritiz Tambi Sudharshan Reddy Kakumanu Purvak Lapsiya Alvin Ghouas Sarah Saber Malavika Ramprasad Baldo Faieta and Ajinkya Kale. 2023. Controlled and conditional text to image generation with diffusion prior. arxiv:cs.CV/2302.11710. Retrieved from https://arxiv.org/abs/2302.11710

3. Reflectance modeling by neural texture synthesis

4. Two-shot SVBRDF capture for stationary materials

5. Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning. PMLR, 214–223.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3