Challenges and design choices in nanoscale CMOS

Author:

Narendra Siva G.1

Affiliation:

1. Portland, OR

Abstract

The driving force for the semiconductor industry growth has been the elegant scaling nature of CMOS technology. In this article, we will first review the history of technology scaling that follows Moore's law from the prespective of microprocessor designs. Challenges to continue the historical scaling trends will be highlighted and design choices to address two specific challenges, process variation and leakage power, will be discussed. In nanoscale CMOS technology generations, supply and threshold voltages will have to continually scale to sustain performance increase, limit energy consumption, control power dissipation, and maintain reliability. These continual scaling requirements on supply and threshold voltages pose several technology and circuit design challenges. One such challenge is the expected increase in process variation and the resulting increase in design margins. Concept of adaptive circuit schemes to deal with increasing design margins will be explained. Next, with threshold voltage scaling, subthreshold leakage power has become a significant portion of total power in nanoscale CMOS systems. Therefore, it has become imperative to accurately predict and minimize leakage power of such systems, especially with increasing within-die threshold voltage variation. A model that predicts system leakage based on first principles will be presented and circuit techniques to reduce system leakage will be discussed. It is essential to point out that this article does not cover all challenges that nanoscale CMOS systems face. Challenges that are not detailed in the main sections of the article and speculation on what future nanoscale silicon based CMOS systems might resemble are summarized.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ultra-low power QCA based vedic multiplier for digital radar application;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

2. Possibilities and Limitations of CMOS Technology for the Production of Various Microelectronic Systems and Devices;Nanobiotechnology Reports;2022-02

3. A Novel Dual Gate Hetero Dielectric Hetero Material Reconfigurable FET;Tailored Functional Materials;2022

4. Flicker Noise Analysis of Non-uniform Body TFET with Dual Material Source (NUTFET-DMS);Lecture Notes in Electrical Engineering;2021-09-10

5. Nanotechnology: Improvement in Agricultural Productivity;Nano‐Technological Intervention in Agricultural Productivity;2021-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3