Affiliation:
1. Princeton University, USA
2. University of Wisconsin-Madison, USA
3. University of Wisconsin-Madison, USA / GrammaTech, USA
Abstract
Automatic generation of non-linear loop invariants is a long-standing challenge in program analysis, with many applications. For instance, reasoning about exponentials provides a way to find invariants of digital-filter programs, and reasoning about polynomials and/or logarithms is needed for establishing invariants that describe the time or memory usage of many well-known algorithms. An appealing approach to this challenge is to exploit the powerful recurrence-solving techniques that have been developed in the field of computer algebra, which can compute exact characterizations of non-linear repetitive behavior. However, there is a gap between the capabilities of recurrence solvers and the needs of program analysis: (1) loop bodies are not merely systems of recurrence relations---they may contain conditional branches, nested loops, non-deterministic assignments, etc., and (2) a client program analyzer must be able to reason about the closed-form solutions produced by a recurrence solver (e.g., to prove assertions).
This paper presents a method for generating non-linear invariants of general loops based on analyzing recurrence relations. The key components are an abstract domain for reasoning about non-linear arithmetic, a semantics-based method for extracting recurrence relations from loop bodies, and a recurrence solver that avoids closed forms that involve complex or irrational numbers. Our technique has been implemented in a program analyzer that can analyze general loops and mutually recursive procedures. Our experiments show that our technique shows promise for non-linear assertion-checking and resource-bound generation.
Funder
Defense Advanced Research Projects Agency
Wisconsin Alumni Research Foundation
Rajiv and Ritu Batra
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,Software
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献